Sabtu, 19 November 2011

MOTOR OIL

Motor oil or engine oil is an oil used for lubrication of various internal combustion engines. The main function is to lubricate moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts.
Motor oils are derived from petroleum-based and non-petroleum-synthesized chemical compounds. Motor oils today are mainly blended by using base oils composed ofhydrocarbons, polyalphaolefins (PAO), and polyinternal olefins (PIO), thus organic compounds consisting entirely of carbon and hydrogen. The base oils of some high-performance motor oils contain up to 20 wt.-% of esters.
The Society of Automotive Engineers (SAE) has established a numerical code system for grading motor oils according to their viscosity characteristics. SAE viscosity gradings include the following, from low to high viscosity: 0, 5, 10, 15, 20, 25, 30, 40, 50 or 60. The numbers 0, 5, 10, 15 and 25 are suffixed with the letter W, designating their "winter" (not "weight") or cold-start viscosity, at lower temperature. The number 20 comes with or without a W, depending on whether it is being used to denote a cold or hot viscosity grade. The document SAE J300 defines the viscometrics related to these grades.
Kinematic viscosity is graded by measuring the time it takes for a standard amount of oil to flow through a standard orifice, at standard temperatures. The longer it takes, the higher the viscosity and thus higher SAE code.
Note that the SAE has a separate viscosity rating system for gear, axle, and manual transmission oils, SAE J306, which should not be confused with engine oil viscosity. The higher numbers of a gear oil (e.g. 75W-140) do not mean that it has higher viscosity than an engine oil.


Single-grade

A single-grade engine oil, as defined by SAE J300, cannot use a polymeric Viscosity Index Improver (also referred to as Viscosity Modifier) additive. SAE J300 has established eleven viscosity grades, of which six are considered Winter-grades and given a W designation. The 11 viscosity grades are 0W, 5W, 10W, 15W, 20W, 25W, 20, 30, 40, 50, and 60. These numbers are often referred to as the 'weight' of a motor oil; and single-grade motor oils are often called "straight-weight" oils.
For single winter grade oils, the dynamic viscosity is measured at different cold temperatures, specified in J300 depending on the viscosity grade, in units of mPa·s or the equivalent older non-SI units, centipoise (abbreviated cP), using two different test methods. They are the Cold Cranking Simulator (ASTMD5293) and the Mini-Rotary Viscometer (ASTM D4684). Based on the coldest temperature the oil passes at, that oil is graded as SAE viscosity grade 0W, 5W, 10W, 15W, 20W, or 25W. The lower the viscosity grade, the lower the temperature the oil can pass. For example, if an oil passes at the specifications for 10W and 5W, but fails for 0W, then that oil must be labeled as an SAE 5W. That oil cannot be labeled as either 0W or 10W.
For single non-winter grade oils, the kinematic viscosity is measured at a temperature of 100 °C (212 °F) in units of mm²/s (millimeter squared per second) or the equivalent older non-SI units, centistokes (abbreviated cSt). Based on the range of viscosity the oil falls in at that temperature, the oil is graded as SAE viscosity grade 20, 30, 40, 50, or 60. In addition, for SAE grades 20, 30, and 40, a minimum viscosity measured at 150 °C (302 °F) and at a high-shear rate is also required. The higher the viscosity, the higher the SAE viscosity grade is.
For some applications, such as when the temperature ranges in use are not very wide, single-grade motor oil is satisfactory; for example, lawn mower engines, industrial applications, and vintage or classic cars.


Multi-grade

The temperature range the oil is exposed to in most vehicles can be wide, ranging from cold temperatures in the winter before the vehicle is started up, to hot operating temperatures when the vehicle is fully warmed up in hot summer weather. A specific oil will have high viscosity when cold and a lower viscosity at the engine's operating temperature. The difference in viscosities for most single-grade oil is too large between the extremes of temperature. To bring the difference in viscosities closer together, special polymer additives called viscosity index improvers, or VIIs are added to the oil. These additives are used to make the oil a multi-grade motor oil, though it is possible to have a multi-grade oil without the use of VIIs. The idea is to cause the multi-grade oil to have the viscosity of the base grade when cold and the viscosity of the second grade when hot. This enables one type of oil to be used all year. In fact, when multi-grades were initially developed, they were frequently described as all-season oil. The viscosity of a multi-grade oil still varies logarithmically with temperature, but the slope representing the change is lessened. This slope representing the change with temperature depends on the nature and amount of the additives to the base oil.
The SAE designation for multi-grade oils includes two viscosity grades; for example, 10W-30 designates a common multi-grade oil. The two numbers used are individually defined by SAE J300 for single-grade oils. Therefore, an oil labeled as 10W-30 must pass the SAE J300 viscosity grade requirement for both 10W and 30, and all limitations placed on the viscosity grades (for example, a 10W-30 oil must fail the J300 requirements at 5W). Also, if an oil does not contain any VIIs, and can pass as a multi-grade, that oil can be labelled with either of the two SAE viscosity grades. For example, a very simple multi-grade oil that can be easily made with modern base oils without any VII is a 20W-20. This oil can be labeled as 20W-20, 20W, or 20. Note, if any VIIs are used however, then that oil cannot be labeled as a single grade.
The real-world ability of an oil to crank or pump when cold is potentially diminished soon after it is put into service. The motor oil grade and viscosity to be used in a given vehicle is specified by the manufacturer of the vehicle (although some modern European cars now have no viscosity requirement), but can vary from country to country when climatic or fuel efficiency constraints come into play.

The American Petroleum Institute (API) sets minimum for performance standards for lubricants. Motor oil is used for the lubrication, cooling, and cleaning of internal combustion engines. Motor oil may be composed of a lubricant base stock only in the case of non-detergent oil, or a lubricant base stock plus additives to improve the oil's detergency, extreme pressure performance, and ability to inhibit corrosion of engine parts. Lubricant base stocks are categorized into five groups by the API. Group I base stocks are composed of fractionally distilled petroleum which is further refined with solvent extraction processes to improve certain properties such as oxidation resistance and to remove wax. Group II base stocks are composed of fractionally distilled petroleum that has been hydro cracked to further refine and purify it. Group III base stocks have similar characteristics to Group II base stocks, except that Group III base stocks have higher viscosity indexes. Group III base stocks are produced by further hydrocracking of Group II base stocks, or of hydroisomerized slack wax, (a byproduct of the dewaxing process). Group IV base stock are polyalphaolefins (PAOs). Group V is a catch-all group for any base stock not described by Groups I to IV. Examples of group V base stocks include polyol esters, polyalkylene glycols (PAG oils), and perfluoropolyalkylethers (PFPAEs). Groups I and II are commonly referred to as mineral oils, group III is typically referred to as synthetic (except in Germany and Japan, where they must not be called synthetic) and group IV is a synthetic oil. Group V base oils are so diverse that there is no catch-all description.

The API service classes have two general classifications: S for "service/spark ignition" (typical passenger cars and light trucks using gasoline engines), and C for "commercial/compression ignition" (typical diesel equipment). Engine oil which has been tested and meets the API standards may display the API Service Symbol (also known as the "Donut") with the service designation on containers sold to oil users.
The API oil classification structure has eliminated specific support for wet-clutch motorcycle applications in their descriptors, and API SJ and newer oils are referred to be specific to automobile and light truck use. Accordingly, motorcycle oils are subject to their own unique standards.

The latest API service standard designation is SN for gasoline automobile and light-truck engines. The SN standard refers to a group of laboratory and engine tests, including the latest series for control of high-temperature deposits. Current API service categories include SN,SM, SL and SJ for gasoline engines. All previous service designations are obsolete, although motorcycle oils commonly still use the SF/SG standard.
All the current gasoline categories (including the obsolete SH), have placed limitations on the phosphorus content for certain SAE viscosity grades (the xW-20, xW-30) due to the chemical poisoning that phosphorus has on catalytic converters. Phosphorus is a key anti-wear component in motor oil and is usually found in motor oil in the form of Zinc dithiophosphate. Each new API category has placed successively lower phosphorus and zinc limits, and thus has created a controversial issue obsolescing oils needed for older engines, especially engines with sliding (flat/cleave) tappets. API, and ILSAC, which represents most of the worlds major automobile/engine manufactures, states API SM/ILSAC GF-4 is fully backwards compatible, and it is noted that one of the engine tests required for API SM, the Sequence IVA, is a sliding tappet design to test specifically for cam wear protection. However, not everyone is in agreement with backwards compatibility, and in addition, there are special situations, such as "performance" engines or fully race built engines, where the engine protection requirements are above and beyond API/ILSAC requirements. Because of this, there are specialty oils out in the market place with higher than API allowed phosphorus levels. Most engines built before 1985 have the flat/cleave bearing style systems of construction, which is sensitive to reducing zinc and phosphorus. Example; in API SG rated oils, this was at the 1200-1300 ppm level for zincs and phosphorus, where the current SM is under 600 ppm. This reduction in anti-wear chemicals in oil has caused pre-mature failures of camshafts and other high pressure bearings in many older automobiles and has been blamed for pre-mature failure of the oil pump drive/cam position sensor gear that is meshed with camshaft gear in some modern engines.
There are six diesel engine service designations which are current: CJ-4, CI-4, CH-4, CG-4, CF-2, and CF. Some manufacturers continue to use obsolete designations such as CC for small or stationary diesel engines. In addition, API created a separated CI-4 PLUS designation in conjunction with CJ-4 and CI-4 for oils that meet certain extra requirements, and this marking is located in the lower portion of the API Service Symbol "Donut".
It is possible for an oil to conform to both the gasoline and diesel standards. In fact, it is the norm for all diesel rated engine oils to carry the "corresponding" gasoline specification. For example, API CJ-4 will almost always list either SL or SM, API CI-4 with SL, API CH-4 with SJ, and so on.

VISCOCITY

Viscosity is a measure of the resistance of a fluid which is being deformed by either shear or tensile stress. In everyday terms (and for fluids only), viscosity is "thickness" or "internal friction". Thus, water is "thin", having a lower viscosity, while honey is "thick", having a higher viscosity. Put simply, the less viscous the fluid is, the greater its ease of movement (fluidity).
Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. For example, high-viscosity felsic magma will create a tall, steep stratovolcano, because it cannot flow far before it cools, while low-viscosity mafic lava will create a wide, shallow-sloped shield volcano. All real fluids (except superfluids) have some resistance to stress and therefore are viscous, but a fluid which has no resistance to shear stress is known as anideal fluid or inviscid fluid.
from : http://en.wikipedia.org/wiki/Viscosity

Selasa, 15 November 2011

POMPA SENTRIFUGAL ( CENTRIFUGAL PUMPS )

Pompa ini digerakkan oleh motor. Daya dari motor diberikan pada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Akibat dari putaran impeler yang menimbulkan gaya sentrifugal, maka zat cair akan mengalir dari tengah impeler keluar lewat saluran di antara sudu-sudu dan meninggalkan impeler dengan kecepatan yang tinggi.
Zat cair yang keluar dari impeler dengan kecepatan tinggi kemudian melalui saluran yang penampangnya semakin membesar yang disebut volute, sehingga akan terjadi perubahan dari head kecepatan menjadi head tekanan. Jadi zat cair yang keluar dari flens keluar pompa head totalnya bertambah besar. Sedangkan proses pengisapan terjadi karena setelah zat cair dilemparkan oleh impeller, ruang diantara sudu-sudu menjadi vakum, sehingga zat cair akan terisap masuk.
Selisih energi persatuan berat atau head total dari zat cair pada flens keluar dan flens masuk disebut sebagai head total pompa. Sehingga dapat dikatakan bahwa pompa sentrifugal berfungsi mengubah energi mekanik motor menjadi energi aliran fluida. Energi inilah yang mengakibatkan pertambahan head kecepatan, head tekanan dan head potensial secara kontinu.
Prinsip Kerja Pompa sentrifugal

Bagian-Bagian Pompa Sentrifugal
Secara umum bagian-bagian utama pompa sentrifugal dapat dilihat sepert gambar  berikut :
Bagian - Bagian Pompa


                 a.    Stuffing Box
Stuffing Box berfungsi untuk mencegah kebocoran pada daerah dimana poros pompa menembus casing.
b. Packing
Digunakan untuk mencegah dan mengurangi bocoran cairan dari casing pompa melalui poros. Biasanya terbuat dari asbes atau teflon.
 c   Shaft (poros)
Poros berfungsi untuk meneruskan momen puntir dari penggerak selama beroperasi dan tempat kedudukan impeller dan bagian-bagian berputar lainnya.
d.  Shaft sleeve
Shaft sleeve berfungsi untuk melindungi poros dari erosi, korosi dan keausan pada stuffing box. Pada pompa multi stage dapat sebagai leakage joint, internal bearing dan interstage atau distance sleever.
e.  Vane
Sudu dari impeller sebagai tempat berlalunya cairan pada impeller.
f.   Casing
Merupakan bagian paling luar dari pompa yang berfungsi sebagai pelindung elemen yang berputar, tempat kedudukan diffusor (guide vane), inlet dan outlet nozel serta tempat memberikan arah aliran dari impeller dan mengkonversikan energi kecepatan cairan menjadi energi dinamis (single stage).
g.  Eye of Impeller
Bagian sisi masuk pada arah isap impeller.
 h.  Impeller
Impeller berfungsi untuk mengubah energi mekanis dari pompa menjadi energi kecepatan pada cairan yang dipompakan secara kontinyu, sehingga cairan pada sisi isap secara terus menerus akan masuk mengisi kekosongan akibat perpindahan dari cairan yang masuk sebelumnya.
                i.      Wearing Ring
Wearing ring berfungsi untuk memperkecil kebocoran cairan yang melewati bagian depan impeller maupun bagian belakang impeller, dengan cara memperkecil celah antara casing  dengan impeller.
j. Bearing
Beraing (bantalan) berfungsi untuk menumpu dan menahan beban dari poros agar dapat berputar, baik berupa beban radial maupun beban axial. Bearing juga memungkinkan poros untuk dapat berputar dengan lancar dan tetap pada tempatnya, sehingga kerugian gesek menjadi kecil.
k.  Casing
Merupakan bagian paling luar dari pompa yang berfungsi sebagai pelindung elemen yang berputar, tempat kedudukan diffusor (guide vane), inlet dan outlet nozel serta tempat memberikan arah aliran dari impeller dan mengkonversikan energi kecepatan cairan menjadi energi dinamis (single stage).

Keuntungan Pompa Sentrifugal
Keuntungan pompa sentrifugal dibandingkan jenis pompa lain :
1.  Pada head dan kapasitas yang sama, dengan pemakaian pompa sentrifugal umumnya paling murah.
2.  Operasional paling mudah
3.  Aliran seragam dan halus.
4.  Kehandalan dalam operasi.
5.  Biaya pemeliharaan yang rendah.

Kekurangan Pompa Sentrifugal
Kekurangan pompa sentrifugal antara lain :
1.    Dalam keadaan normal pompa sentrifugal tidak dapat menghisap sendiri {tidak dapat memompakan udara}.
2.   Kurang cocok untuk mengerjakan zat cair kental, terutama pada aliran volume yang kecil.

Klasifikasi Pompa Sentrifugal
Pompa sentrifugal dapat diklasifikasikan menjadi beberapa macam :
1.  Berdasarkan arah aliran di dalam impeler pompa sentrifugal dibagi menjadi:
a. Aliran radial (Radial flow)
b. Aliran aksial (Axial flow)
c. Aliran campur (Mixed flow)
2.  Menurut kapasitas
a. Kapasitas rendah (<20 m3/jam)
b. Kapasitas sedang (20 – 60 m3/jam)
c. Kapasitas tinggi (>60 m3/jam)
3.  Menurut tekanan yang dihasilkan :
a. Tekanan rendah (<5 kg/cm2)
b. Tekanan menengah (5 – 50 kg/cm2)
c. Tekanan tinggi (>50kg/cm2)
4.  Menurut kecepatan spesifik :
a. Kecepatan rendah
b. Kecepatan menengah
c. Kecepatan tinggi
d. Pompa aliran campur
e. Pompa aliran aksial
5.  Menurut jumlah impeler dengan tingkatannya :
a. Pompa dengan impeler tunggal.
b. Pompa dengan impeler banyak.
6.  Menurut sisi masuk impeler :
     a.  Single stage          : Terdiri dari satu impeller dan satu casing
b.  Multi stage      : Terdiri dari beberapa impeller yang tersusun seri dalam satu casing.
c.  Multi Impeller        : Terdiri dari beberapa impeller yang tersusun paralel dalam satu casing.
d.  Multi Impeller dan Multi stage : Kombinasi multi impeller dan multi stage.
7.  Menurut perencanaan rumah pompa :
a. Rumah tunggal
b. Rumah bersekat-sekat, digunakan pada pompa multi tingkat.
8.  Menurut letak poros :
a. Pompa poros horisontal
b. Pompa poros vertikal
9.  Menurut sistem penggerak :
a. Dikopel langsung pada unit penggerak
b. Melewati beberapa macam jenis transmisi (belt, roda gigi, dll)

Senin, 10 Oktober 2011

Motor 2 Tak ( 2 Stroke )

Mesin dua tak adalah mesin pembakaran dalam yang dalam satu siklus pembakaran terjadi dua langkah piston, berbeda dengan putaran empat-tak yang mempunyai empat langkah piston dalam satu siklus pembakaran, meskipun keempat proses (intake, kompresi, tenaga, pembuangan) juga terjadi.
Mesin dua tak juga telah digunakan dalam mesin diesel, terutama rancangan piston berlawanan, kendaraan kecepatan rendah seperti mesin kapal besar, dan mesin V8 untuk truk dan kendaraan berat lainnya.

 Animasi prinsip kerja motor 2 tak (klik gambar)

Prinsip kerja

Untuk memahami prinsip kerja, perlu dimengerti istilah baku yang berlaku dalam teknik otomotif :
  • TMA (titik mati atas) atau TDC (top dead centre), posisi piston berada pada titik paling atas dalam silinder mesin atau piston berada pada titik paling jauh dari poros engkol (crankshaft).
  • TMB (titik mati bawah) atau BDC (bottom dead centre), posisi piston berada pada titik paling bawah dalam silinder mesin atau piston berada pada titik paling dekat dengan poros engkol (crankshaft).
  • Ruang bilas yaitu ruangan dibawah piston dimana terdapat poros engkol (crankshaft), sering disebut dengan bak engkol (crankcase) berfungsi gas hasil campuran udara, bahan bakar dan pelumas bisa tercampur lebih merata.
  • Pembilasan (scavenging) yaitu proses pengeluaran gas hasil pembakaran dan proses pemasukan gas untuk pembakaran dalam ruang bakar.

Langkah kesatu

Piston bergerak dari TMA ke TMB.
  1. Pada saat piston bergerak dari TMA ke TMB, maka akan menekan ruang bilas yang berada di bawah piston. Semakin jauh piston meninggalkan TMA menuju TMB, tekanan di ruang bilas semakin meningkat.
  2. Pada titik tertentu, piston (ring piston) akan melewati lubang pembuangan gas dan lubang pemasukan gas. Posisi masing-masing lubang tergantung dari desain perancang. Umumnya ring piston akan melewati lubang pembuangan terlebih dahulu.
  3. Pada saat ring piston melewati lubang pembuangan, gas di dalam ruang bakar keluar melalui lubang pembuangan.
  4. Pada saat ring piston melewati lubang pemasukan, gas yang tertekan dalam ruang bilas akan terpompa masuk dalam ruang bakar sekaligus mendorong gas yang ada dalam ruang bakar keluar melalui lubang pembuangan.
  5. Piston terus menekan ruang bilas sampai titik TMB, sekaligus memompa gas dalam ruang bilas masuk ke dalam ruang bakar

Langkah kedua

Piston bergerak dari TMB ke TMA.
  1. Pada saat piston bergerak TMB ke TMA, maka akan menghisap gas hasil percampuran udara, bahan bakar dan pelumas masuk ke dalam ruang bilas. Percampuran ini dilakukan oleh karburator atau sistem injeksi. (Lihat pula:Sistem bahan bakar)
  2. Saat melewati lubang pemasukan dan lubang pembuangan, piston akan mengkompresi gas yang terjebak dalam ruang bakar.
  3. Piston akan terus mengkompresi gas dalam ruang bakar sampai TMA.
  4. Beberapa saat sebelum piston sampai di TMA, busi menyala untuk membakar gas dalam ruang bakar. Waktu nyala busi sebelum piston sampai TMA dengan tujuan agar puncak tekanan dalam ruang bakar akibat pembakaran terjadi saat piston mulai bergerak dari TMA ke TMB karena proses pembakaran sendiri memerlukan waktu dari mulai nyala busi sampai gas terbakar dengan sempurna.

Perbedaan desain dengan mesin empat tak

  • Pada mesin dua tak, dalam satu kali putaran poros engkol (crankshaft) terjadi satu kali proses pembakaran sedangkan pada mesin empat tak, sekali proses pembakaran terjadi dalam dua kali putaran poros engkol.
  • Pada mesin empat tak, memerlukan mekanisme katup (valve mechanism) dalam bekerja dengan fungsi membuka dan menutup lubang pemasukan dan lubang pembuangan, sedangkan pada mesin dua tak, piston dan ring piston berfungsi untuk menbuka dan menutup lubang pemasukan dan lubang pembuangan. Pada awalnya mesin dua tak tidak dilengkapi dengan katup, dalam perkembangannya katup satu arah (one way valve) dipasang antara ruang bilas dengan karburator dengan tujuan :
    1. Agar gas yang sudah masuk dalam ruang bilas tidak kembali ke karburator.
    2. Menjaga tekanan dalam ruang bilas saat piston mengkompresi ruang bilas.
  • Lubang pemasukan dan lubang pembuangan pada mesin dua tak terdapat pada dinding silinder, sedangkan pada mesin empat tak terdapat pada kepala silinder (cylinder head). Ini adalah alasan paling utama mesin dua tak menggunakan oli samping.

Kelebihan dan kekurangan

Kelebihan mesin dua tak

Dibandingkan mesin empat tak, kelebihan mesin dua tak adalah :
  1. Mesin dua tak lebih bertenaga dibandingkan mesin empat tak.
  2. Mesin dua tak lebih kecil dan ringan dibandingkan mesin empat tak.
    • Kombinasi kedua kelebihan di atas menjadikan rasio berat terhadap tenaga (power to weight ratio) mesin dua lebih baik dibandingkan mesin empat tak.
  3. Mesin dua tak lebih murah biaya produksinya karena konstruksinya yang sederhana.
Meskipun memiliki kelebihan tersebut di atas, jarang digunakan dalam aplikasi kendaraan terutama mobil karena memiliki kekurangan.

Kekurangan mesin dua tak

Kekurangan mesin dua tak dibandingkan mesin empat tak
  1. Efisiensi mesin dua tak lebih rendah dibandingkan mesin empat tak.
  2. Mesin dua tak memerlukan oli yang dicampur dengan bahan bakar (oli samping/two stroke oil) untuk pelumasan silinder mesin.
    • Kedua hal di atas mengakibatkan biaya operasional mesin dua tak lebih tinggi dibandingkan mesin empat tak.
  3. Mesin dua tak menghasilkan polusi udara lebih banyak, polusi terjadi dari pembakaran oli samping dan gas dari ruang bilas yang terlolos masuk langsung ke lubang pembuangan.
  4. Pelumasan mesin dua tak tidak sebaik mesin empat tak, mengakibatkan usia suku cadang dalam komponen ruang bakar relatif lebih rendah.

Aplikasi

Mesin dua tak diaplikasikan untuk mesin bensin maupun mesin diesel. Mesin bensin dua tak digunakan paling banyak di mesin kecil, seperti :
  • Mesin sepeda motor.
  • Mesin pada gergaji (chainsaw).
  • Mesin potong rumput.
  • Mobil salju.
  • Mesin untuk pesawat model, dan sebagainya.
Mesin dua tak yang besar biasanya bertipe mesin diesel, sedangkan mesin dua tak ukuran sedang sangat jarang digunakan.
Karena emisi gas buang sulit untuk memenuhi standar UNECE Euro II, penggunaan mesin dua-tak untuk sepeda motor sudah semakin jarang.

Cara Kerja Mesin 4 tak ( 4 Stroke )

Mengapa mesin disebut 4 tak, karena memang ada 4 langkah. berikut cara kerja na...

1. Intake / hisap
Disebut langkah intake/hisap karena langkah pertama adalah menghisap melalui piston dari karburator. Pasokan bahan bakar tidak cukup hanya dari semprotan karburator. Cara kerjanya adalah sbb. Piston pertama kali berada di posisi atas (atau disebut Titik Mati Atas/ TMA). Lalu piston menghisap bahan bakar yang sudah disetting/dicampur antara bensin dan udara di karburator. Piston lalu mundur menghisap bahan bakar. Untuk membuka, diperlukan klep atau valve inlet yang akan membuka pada saat piston turun/menghisap ke arah bawah.

Gerakan valve atau inlet diatur oleh camshaft secara mekanis. Yakni, camshaft mengatur besaran bukaan klep dengan cara menekan tuas klep. Camshaft sendiri digerakan oleh rantai keteng yang disambungkan antara camshaft ke crankshaft.beberapa mobil Eropa seperti Mercedez menggunakan rantai sebagai penghubung antara crankshaft dan camshaft, tetapi umumnya di mobil Jepang menggunakan belt yang kita kenal sebagai timing belt.

2. Kompresi
Langkah ini adalah lanjutan dari langkah di atas. Setelah piston mencapai titik terbawah di tahapan intake, lalu valve intake tertutup, dan dilakukan proses kompresi. Yakni, bahan bakar yang sudah ada di ruang bakar dimampatkan. Ruangan sudah tertutup rapat karena kedua valve (intake dan exhaust) tertutup. Proses ini terus berjalan sampai langkah berikut yakni meledaknya busi di langkah ke 3.


3. Combustion (Pembakaran)
Tahap berikut adalah busi pada titik tertentu akan meledak setelah PISTON BERGERAK MENCAPAI TITIK MATI ATAS DAN MUNDUR BEBERAPA DERAJAT. Jadi, busi tidak meledak pada saat piston di titik paling atas (disebut titik 0 derajat), tetapi piston mundur dulu, baru meledak. Hal ini karena untuk menghindari adanya energi yang terbuang sia-sia karena pada saat piston di titik mati atas, masih ada energi laten (yang tersimpan akibat dorongan proses kompresi). Jika pada titik 0 derajat busi meledak, bisa jadi piston mundur tetapi mengengkol crankshaft ke arah belakang (motor mundur ke belakang, bukan memutar roda ke depan).
Setelah proses pembakaran, maka piston memiliki energi untuk mendorong crankshaft yang nantinya akan dialirkan melalui gearbox dan sproket, rantai, dan terakhir ke roda.



4. Exhaust (Pembuangan)
Langkah terakhir ini dilakukan setelah pembakaran. Piston akibat pembakaran akan terdorong hingga ke titik yang paling bawah, atau disebut Titik Mati Bawah (TMB). Setelah itu, piston akan mendorong ke depan dan klep exhaust membuka sementara klep intake tertutup. Oleh karena itu, maka gas buang akan terdorong masuk ke lubang Exhaust Port (atau kita bilang lubang sambungan ke knalpot). Dengan demikian, maka kita bisa membuang semua sisa gas buang akibat pembakaran. Dan setelah bersih kembali, lalu kita akan masuk lagi mengulangi langkah ke 1 lagi.


Kamis, 18 Agustus 2011

PERLAKUAN PANAS ( HEAT TREATMENT)

Heat Treatment ( perlakuan panas ) adalah salah satu proses untuk mengubah struktur logam dengan jalan memanaskan specimen pada elektrik terance ( tungku ) pada temperature rekristalisasi selama periode waktu tertentu kemudian didinginkan pada media pendingin seperti udara, air, air garam, oli dan solar yang masing-masing mempunyai kerapatan pendinginan yang berbeda-beda.
Sifat-sifat logam yang terutama sifat mekanik yang sangat dipengaruhi oleh struktur mikrologam disamping posisi kimianya, contohnya suatu logam atau paduan akan mempunyai sifat mekanis yang berbeda-beda struktur mikronya diubah. Dengan adanya pemanasan atau pendinginan degnan kecepatan tertentu maka bahan-bahan logam dan paduan memperlihatkan perubahan strukturnya.
Perlakuan panas adalah proses kombinasi antara proses pemanasan atau pendinginan dari suatu logam atau paduannya dalam keadaan padat untuk mendaratkan sifat-sifat tertentu. Untuk mendapatkan hal ini maka kecepatan pendinginan dan batas temperature sangat menetukan.
 
 Quenching
Proses quenching atau pengerasan baja adalah suatu proses pemanasan logam sehingga mencapai batas austenit yang homogen. Untuk mendapatkan kehomogenan ini maka austenit perlu waktu pemanasan yang cukup. Selanjutnya secara cepat baja tersebut dicelupkan ke dalam media pendingin, tergantung pada kecepatan pendingin yang kita inginkan untuk mencapai kekerasan baja.
Pada waktu pendinginan yang cepat pada fase austenit tidak sempat berubah menjadi ferit atau perlit karena tidak ada kesempatan bagi atom-atom karbon yang telah larut dalam austenit untuk mengadakan pergerakan difusi dan bentuk sementit oleh karena itu terjadi fase mertensit, ini berupa fase yang sangat keras dan bergantung pada keadaan karbon.
Martensit adalah fasa metastabil terbentuk dengan laju pendinginan cepat, semua unsur paduan masih larut dalam keadaan padat. Pemanasan harus dilakukan secara bertahap (preheating) dan perlahan-lahan untuk memperkecil deformasi ataupun resiko retak. Setelah temperatur pengerasan (austenitizing) tercapai, ditahan dalam selang waktu tertentu (holding time) kemudian didinginkan cepat.
Pada dasarnya baja yang telah dikeraskan bersifat rapuh dan tidak cocok untuk digunakan. Melalui temper, kekerasan, dan kerapuhan dapat diturunkan sampai memenuhi persyaratan. Kekerasan turun, kekuatan tarik akan turun, sedang keuletan dan ketangguhan akan meningkat. Pada saat tempering proses difusi dapat terjadi yaitu karbon dapat melepaskan diri dari martensit berarti keuletan (ductility) dari baja naik, akan tetapi kekuatan tarik, dan kekerasan menurun. Sifat-sifat mekanik baja yang telah dicelup, dan di-temper dapat diubah dengan cara mengubah temperatur tempering.
 
Annealing
Proses anneling atau melunakkan baja adalah prose pemanasan baja di atas temperature kritis ( 723 °C ) selanjutnya dibiarkan bebrapa lama sampai temperature merata disusul dengan pendinginan secara perlahan-lahan sambil dijaga agar temperature bagian luar dan dalam kira-kira sama hingga diperoleh struktur yang diinginkan dengan menggunakan media pendingin udara.
Tujuan proses anneling :
1. Melunakkan material logam
2. Menghilangkan tegangan dalam / sisa
3. Memperbaiki butir-butir logam.

Normalizing
Normalizing adalah suatu proses pemanasan logam hingga mencapai fase austenit yang kemudian diinginkan secara perlahan-lahan dalam media pendingin udara. Hasil pendingin ini berupa perlit dan ferit namun hasilnya jauh lebih mulus dari anneling. Prinsip dari proses normalizing adalah untuk melunakkan logam. Namun pada baja karbon tinggi atau baja paduan tertentu dengan proses ini belum tentu memperoleh baja yang lunak. Mungkin berupa pengerasan dan ini tergantung dari kadar karbon.
 
Tempering.
Perlakuan untuk menghilangkan tegangan dalam dan menguatkan baja dari kerapuhan disebut dengan memudakan (tempering). Tempering didefinisikan sebagai proses pemanasan logam setelah dikeraskan pada temperatur tempering (di bawah suhu kritis), yang dilanjutkan dengan proses pendinginan. Baja yang telah dikeraskan bersifat rapuh dan tidak cocok untuk digunakan, melalui proses tempering kekerasan dan kerapuhan dapat diturunkan sampai memenuhi persyaratan penggunaan. Kekerasan turun, kekuatan tarik akan turun pula sedang keuletan dan ketangguhan baja akan meningkat. Meskipun proses ini menghasilkan baja yang lebih lunak, proses ini berbeda dengan proses anil (annealing) karena di sini sifat-sifat fisis dapat dikendalikan dengan cermat. Pada suhu 200°C sampai 300°C laju difusi lambat hanya sebagian kecil. karbon dibebaskan, hasilnya sebagian struktur tetap keras tetapi mulai kehilangan kerapuhannya. Di antara suhu 500°C dan 600°C difusi berlangsung lebih cepat, dan atom karbon yang berdifusi di antara atom besi dapat membentuk sementit.
Menurut tujuannya proses tempering dibedakan sebagai berikut :
1. Tempering pada suhu rendah ( 150° – 300°C )
Tempering ini hanya untuk mengurangi tegangan-tegangan kerut dan kerapuhan dari baja, biasanya untuk alat-alat potong, mata bor dan sebagainya.
2. Tempering pada suhu menengah ( 300° - 550°C )
Tempering pada suhu sedang bertujuan untuk menambah keuletan dan kekerasannya sedikit berkurang. Proses ini digunakan pada alat-alat kerja yang mengalami beban berat, misalnya palu, pahat, pegas. Suhu yang digunakan dalam penelitian ini adalah 500C pada proses tempering.
3. Tempering pada suhu tinggi ( 550° - 650°C )
Tempering suhu tinggi bertujuan memberikan daya keuletan yang besar dan sekaligus kekerasannya menjadi agak rendah misalnya pada roda gigi, poros batang pengggerak dan sebagainya.

Jika suatu baja didinginkan dari suhu yang lebih tinggi dan kemudian ditahan pada suhu yang lebih rendah selama waktu tertentu, maka akan menghasilkan struktur mikro yang berbeda. Hal ini dapat dilihat pada diagram: Isothermal Tranformation Diagram.


Penjelasan diagram:
· Bentuk diagram tergantung dengan komposisi kimia terutama kadar karbon dalam baja.
II-9
· Untuk baja dengan kadar karbon kurang dari 0.83% yang ditahan suhunya dititik tertentu yang letaknya dibagian atas dari kurva C, akan menghasilkan struktur perlit dan ferit.
· Bila ditahan suhunya pada titik tertentu bagian bawah kurva C tapi masih disisi sebelah atas garis horizontal, maka akan mendapatkan struktur mikro Bainit (lebih keras dari perlit).
· Bila ditahan suhunya pada titik tertentu dibawah garis horizontal, maka akan mendapat struktur Martensit (sangat keras dan getas).
· Semakin tinggi kadar karbon, maka kedua buah kurva C tersebut akan bergeser kekanan.
· Ukuran butir sangat dipengaruhi oleh tingginya suhu pemanasan, lamanya pemanasan dan semakin lama pemanasannya akan timbul butiran yang lebih besar. Semakin cepat pendinginan akan menghasilkan ukuran butir yang lebih kecil.
Dalam prakteknya proses pendinginan pada pembuatan material baja dilakukan secara menerus mulai dari suhu yang lebih tinggi sampai dengan suhu rendah.
 
Pengaruh kecepatan pendinginan manerus terhadap struktur mikro yang terbentuk dapat dilihat dari diagram Continuos Cooling Transformation Diagram.
Continues Cooling Transformation Diagram

BAJA


Baja adalah logam paduan dengan besi sebagai unsur dasar dan karbon sebagai unsur paduan utamanya. Kandungan karbon dalam baja berkisar antara 0.2% hingga 2.1% berat sesuai grade-nya. Fungsi karbon dalam baja adalah sebagai unsur pengeras dengan mencegah dislokasi bergeser pada kisi kristal (crystal lattice) atom besi. Unsur paduan lain yang biasa ditambahkan selain karbon adalah mangan (manganese), krom (chromium), vanadium, dan tungsten. Dengan memvariasikan kandungan karbon dan unsur paduan lainnya, berbagai jenis kualitas baja bisa didapatkan.
Penambahan kandungan karbon pada baja dapat meningkatkan kekerasan (hardness) dan kekuatan tariknya (tensile strength), namun di sisi lain membuatnya menjadi getas (brittle) serta menurunkan keuletannya (ductility).

Baja Karbon Rendah (Low Carbon Steel)
Baja kabon rendah (low carbon steel) mengandung karbon dalam campuran baja karbon kurang dari 0,3%. Baja ini bukan baja yang keras karena kandungan karbonnya yang rendah kurang dari 0,3%C. Baja karbon rendah tidak dapat dikeraskan karena kandungan karbonnya tidak cukup untuk membentuk struktur martensit (Amanto,1999).
Baja karbon rendah biasanya digunakan dalam bentuk pelat, profil, sekrap, ulir dan baut.

Baja Karbon Medium (Medium Carbon Steel )
Baja karbon sedang mengandung karbon 0,3%C – 0,6%C (medium carbon steel) dan dengan kandungan karbonnya memungkinkan baja untuk dikeraskan sebagian dengan perlakuan panas (heat treatment) yang sesuai. Baja karbon sedang lebih keras serta lebih lebih kuat dibandingkan dengan baja karbon rendah (Amanto,1999).
Baja karbon medium biasanya digunakan untuk connecting rod, crankshaft, roda gigi, pros engkol, obeng, palu dan lain-lain.

Baja Karbon Tinggi (High Carbon Steel)
Baja karbon tinggi mengandung 0,6%C – 1,5%C dan memiliki kekerasan tinggi namun keuletannya lebih rendah, hampir tidak dapat diketahui jarak tegangan lumernya terhadap tegangan proporsional pada grafik tegangan regangan. Berkebalikan dengan baja karbon rendah, pengerasan dengan perlakuan panas pada baja karbon tinggi tidak memberikan hasil yang optimal dikarenakan terlalu banyaknya martensit sehingga membuat baja menjadi getas.


Selasa, 01 Februari 2011

Tabung dan Selongsong (Shell and Tube)

Jenis umum dari penukar panas, biasanya digunakan dalam kondisi tekanan relatif tinggi, yang terdiri dari sebuah selongsong yang didalamnya disusun suatu anulus dengan rangkaian tertentu (untuk mendapatkan luas permukaan yang optimal). Fluida mengalir di selongsong maupun di anulus sehingga terjadi perpindahan panas antar fluida dengan dinding anulus sebagai perantara. Beberapa jenis rangkaian anulus misalnya; triangular, segiempat, dll.

Jenis Plat

Contoh lainnya adalah penukar panas jenis plat. Alat jenis ini terdiri dari beberapa plat yang disusun dengan rangkaian tertentu, dan fluida yang mengalir diantaranya.

Pengertian Perpindahan Panas

Alat penukar kalor merupakan suatu alat yang menghasilkan perpindahan panas dari suatu fluida yang temperaturnya lebih tinggi ke fluida yang temperaturnya lebih rendah. Proses perpindahan panas tersebut dapat dilakukan secara langsung dan tidak langsung. Maksudnya ialah :
a.Alat penukar kalor kontak langsung Pada alat ini fluida yang panas akan bercampur secara langsung dengan fluida dingin (tanpa adanya pemisah) dalam suatu bejana atau ruangan. Misalnya ejector, daerator dan lain-lain.
b.Alat penukar kalor kontak tak langsung Pada alat ini fluida panas tidak berhubungan langsung (indirect contact) dengan fluida dingin. Jadi proses perpindahan panasnya itu mempunyai media perantara, seperti pipa, plat, atau peralatan jenis lainnya. Misalnya kondensor, ekonomiser air preheater dan lain-lain.

Cara-cara Perpindahan Panas

Perpindahan panas dapat didefinisikan sebagai berpindahnya energi dari satu tempat ke tempatnya sebagai akibat dari perbedaan temperatur antara tempat-tempat tersebut. Pada umumnya perpindahan panas dapat berlangsung melalui 3 cara yaitu secara konduksi, konveksi, radiasi. Untuk alat penukar kalor tipe spiral ini lebih ditekankan pada perpindahan panas secara konveksi sehingga pembahasannya tidak menjelaskan tentang perpindahan panas secara konduksi dan radiasi.
Konveksi adalah proses transport energy dengan kerja gabungan dari konduksi panas, penyimpanan energy dan gerakan mencampur fluida. Perpindahan panas konveksi menurut cara menggerakkan alirannya diklasifikasikan dalam konveksi bebas dan konveksi paksa. Dikatakan sebagai konveksi bebas (free/ natural convection) apabila gerakan
mencampur diakibatkan oleh perbedaan kerapatan massa jenis yang disebabkan oleh gradien suhu, contohnya gerakan yang terlihat pada air yang sedang dipanaskan. Sedangkan apabila gerakan fluida disebabkan kerena adanya energi dari luar seperti pokpa atau kipas maka disebut sebagai konveksi paksa (forced convection), misalnya pendinginan radiator dengan udara yang dihembuskan oleh kipas.
Keefektifan perpindahan panas dengan cara konveksi tergantung sebagian besarnya gerakan mencampur fluida. Sehingga studi perpindahan konveksi didasarkan pada pengetahuan tentang ciri-ciri aliran fluida.

Pemeriksaan Peralatan Penukar Panas

Pada alat penukar kalor ini, kedua fluida mengalir pada dua jalur yang berbeda dan kedua jalur dipisahkan oleh satu plat. Plat yang digunakan adalah dari bahan tembaga. Hal ini dengan pertimbangan bahan plat dan bahan tembaga mempunyai harga konduktivitas (thermal) yang tinggi sehingga mempunyai kemampuan menghantarkan panas yang baik.
Pemeriksaan dilakukan sebagai berikut :
a.Melakukan pemeriksaan pada sekat aliran fluida yang terbuat dari tembaga, untuk pemeriksaan kebocoran.
b.Melakukan pengecekan pada saluran fluida panas dan fluida dingin, jika ada kotoran yang menyumbat harus dibersihkan terlebih dahulu, sehingga aliran fluida dapat lancar.
c.Kedua jalur plat ini juga harus diperiksa agar terjadi pertukaran panas antara kedua fluida tersebut agar fluida panas secara optimum akan mengalami penurunan temperatur sedangkan fluida dingin akan
mengalami kenaikan temperatur.
d.Pemeriksaan pendahuluan sangat penting dikarenakan perbedaan temperatur fluida pada saat masuk dan keluar alat untuk pengambilan data menghitung q (laju aliran panas) yang terjadi pada alat penukar kalor, sehingga pemeriksaan pendahuluan sangat penting.

Perawatan Peralatan Penukar Panas

Peralatan penukar panas sederhana terdiri dari :
1.1 unit Heat Exchanger 1 unit
2.Thermometer Digital 1 buah
3.Stop Watch 1 buah
4.Selang air
Langkah-langkah perawatan sebagai berikut :
a.Buka penuh katup-katup
b.Kemudian tutup penuh katup-katup
c.Dicoba mengalirkan fluida dingin dengan menggunakan katup dan atur debitnya dengan mengatur katup
d.Dicoba mengalirkan fluida panas dengan menggunakan pompa dan atur debitnya dengan mengatur katup
e.Perawatan pada aliran searah, apabila bukaan katup semakin dipersempit maka kecepatan pada aliran fluida panas dan fluida dingin akan semakin lambat, sehingga kinerja peralatan dapat optimum.

Persiapan deskripsi bahan olahan sebelum pelaksanaan proses

Reaksi kimia merupakan suatu proses dimana bahan sebelum diproses disebut dengan reaktan dan hasilnya produk. Lambang dari reaksi kimia sebelum dan sesudah proses menggunakan tanda panah.
A + B -> P + Q
Pada reaksi diatas, A dan B merupakan reaktan sedangkan P dan Q merupakan produk. Dalam hal ini antara reaktan dan produk terjadi perubahan identitas kimia yang dapat berupa perubahan struktur, unsur ataupun molekul kimia
Reaksi kimia adalah suatu reaksi antar senyawa kimia atau unsur kimia yang melibatkan perubahan struktur dari molekul, yang umumnya berkaitan dengan pembentukan dan pemutusan ikatan kimia. Berlangsungnya proses tersebut mempunyai dua kemungkinan yaitu memerlukan energi (disebut dengan reaksi endotermal) atau melepaskan energi (reaksi eksotermal).
Selain itu beberapa ciri fisik antara lain:
a.Terbentuknya endapan
b.Terbentuknya gas
c.Terjadinya perubahan warna
d.Terjadinya perubahan suhu atau temperatur
Semua reaksi kimia menyangkut perubahan energi yang diwujudkan dalam bentuk panas. Kebanyakan reaksi kimia disertai dengan pelepasan panas (reaksi eksotermis), meskipun adapula beberapa reaksi kimia yang menyerap panas (reaksi endotermis). Bahaya dari suatu reaksi kimia terutama adalah karena proses pelepasan energi (panas) yang demikian banyak dan dalam kecepatan yang sangat tinggi, sehingga tidak terkendalikan dan bersifat destruktif (merusak) terhadap lingkungan, termasuk operator/orang yang melakukannya.
Banyak kejadian dan kecelakaan di dalam laboratorium sebagai akibat reaksi kimia yang hebat atau eksplosif (bersifat ledakan). Namun kecelakaan tersebut pada hakikatnya disebabkan oleh kurangnya pengertian atau apresiasi terhadap faktor-faktor kimia-fisika yang mempengaruhi kecepatan reaksi kimia. Beberapa faktor yang dapat mempengaruhi kecepatan suatu reaksi kimia adalah konsentrasi pereaksi, kenaikan suhu reaksi, dan adanya katalis.
Sesuai dengan hukum aksi masa, kecepatan reaksi bergantung pada konsentrasi zat pereaksi. Oleh karena itu, untuk percobaan-percobaan yang belum dikenal bahayanya, tidak dilakukan dengan konsetrasi pekat, melainkan konsentrasi pereaksi kira-kira 10% saja. Kalau reaksi telah dikenal bahayanya, maka konsetrasi pereaksi cukup 2 – 5 % saja sudah memadahi. Suatu contoh, apabila amonia pekat direaksikan dengan dimetil sulfat, maka reaksi akan bersifat eksplosif, akan tetapi tidak demikian apabila digunak
an amonia encer.
Pengaruh suhu terhadap kecepatan reaksi kimia dapat diperkirakan dengan persamaan Arhenius, dimana kecepatan reaksi bertambah secara kesponensial dengan bertambahnya suhu. Secara kasar apabila suhu naik sebesar 10 oC, maka kecepatan reaksi akan naik menjadi dua kali. Atau apabila suhu reaksi mendadak naik 100 oC, ini berarti bahwa kecepatan reaksi mendadak naik berlipat 210 = 1024 kali. Di sinilah pentingnya untuk mengadakan kendali terhadap suhu reaksi, misalnya dengan pendinginan apabila reaksi bersifat eksotermis.
Suatu contoh asam meta-nitrobenzensulfonat pada suhu sekitar 150 oC akan meledak akibat reaksi penguraian eksotermis. Campuran kalium klorat, karbon, dan belerang menjadi eksplosif pada suhu tinggi atau jika kena tumbukan,pengadukan, atau gesekan (pemanasan pelarut). Dengan mengetahui pengarauh kedua faktor di atas maka secara umum dapatlah dilakukan pencegahan dan pengendalian terhadap reaksi-reaksi kimia yang mungkin bersifat eksplosif.

Bahan Bakar Pabrik

Bahan bakar diartikan sebagai bahan yang apabila dibakar dapat meneruskan proses pembakaran tersebut dengan sendirinya, disertai dengan pengeluaran kalor. Bahan bakar dapat berbentuk bahan padat, cair, atau gas yang dapat bereaksi dengan oksigen (udara) secara eksoterm. Panas dari reaksi eksoterm tersebut dapat langsung digunakan untuk pemanasan atau sering juga diubah dulu menjadi bentuk energi lain (biasanya menjadi uap).
Besaran yang penting pada bahan bakar ialah panas rendah” (lower calorific value), yang menyatakan banyaknya panas yang umumnya diperoleh pada pembakaran dalam keadaan normal. Besaran ini dinyatakan dalarn satuan kkal/kg, kJ/kg, kkal/ml atau kJ/mI. Makin halus ukuran bahan bakar, makin cepat bahan tersebut terbakar dan makin mudah penakaran dan pengaturan dilakukan. Di samping itu, kelebihan udara yang diperlukan untuk pembakaran lebih kecil.
ini berarti temperatur menjadi lebih tinggi. Sebagai contoh penggunan kalor dari proses pembakaran secara langsung adalah : untuk memasak di dapur-dapur rumah tangga, instalasi pemanas, sedang contoh penggunaan kalor secara tidak langsung adalah : kalor diubah menjadi nergi mekanik, misalnya pada motor bakar ; kalor diubah menjadi energi listrik, misalnya pada pembangkit listrik tenaga diesel ; tenaga gas dan tenaga uap.

Pembakaran

Pembakaran adalah reaksi kimia yang cepat antara oksigen dan bahan yang dapat terbakar, disertai timbulnya cahaya dan menghasilkan kalor. Pembakaran spontan adalah pembakaran dimana bahan mengalami oksidasi perlahanlahan sehingga kalor yang dihasilkan tidak dilepaskan, akan tetapi dipakai untuk menaikkan suhu bahan secara pelan-pelan sampai mencapai suhu nyala.
Pembakaran sempurna adalah pembakaran dimana semua konstituen yang dapat terbakar di dalam bahan bakar membentuk gas CO2, air (= H2O), dan gas SO2, sehingga tak ada lagi bahan yang dapat terbakar tersisa.

Macam-macam Bahan Bakar

  1. Bahan bakar fosil, seperti: batubara, minyak bumi, dan gas bumi.
  2. Bahan bakar nuklir, seperti: uranium dan plutonium. Pada bahan bakar nuklir, kalor diperoleh dari hasil reaksi rantai
  3. Bahan bakar lain, seperti: sisa tumbuh-tumbuhan, minyak nabati, minyak hewani.

Ketel Uap

Seperti sudah disebutkan di atas bahwa ketel uap adalah suatu pesawat yang digunakan untuk mengubah air yang ada di dalamnya menjadi uap dengan cara dipanaskan. Dengan adanya bahan perantara iar tersebut, maka di dalam ketel uap harus ada ruang atau tempat air.
contoh, untuk ketel pipa air, air berada di dalam pipapipa,sedangkan pemanasannya dari bagian luar (sekeliling) pipa tersebut. Sebaliknya untuk ketel pipa api, airnya berada di sekeliling pipa-pipa api. Cara menempatkan pipa api atau pipa air dibuat sedemikian rupa sehingga mendapatkan peredaran air dan pembentukan uap yang baik. Dengan adanya panas yang 359 dibutuhkan untuk pembentukan uap, pada ketel perlu dilengkapi dengan dapur. Macam konstruksi dapur juga harus ditempatkan sedemikian rupa sehingga peredaran air dalam ketel sempurna.
Dalam pembakaran suatu bahan bakar perlu juga adanya udara pembakaran. Peredaran udara dibuat sedemikian rupa agar pembakaran bahan bakar dapat berlangsung dengan baik. Uap yang dibentuk di dalam ketel mempunyai tekanan yang lebih besar dari pada tekanan udara luar, maka ketel harus mampu menahan tekanan uap tersebut. Kekuatan ketel uap tergantung dari bentuk dan bahannya.
Bentuk yang lebih kuat untuk menahan tekanan yang lebih besar dari dalam adalah bentuk bulat cembung dan silinder sebab dengan bentuk
semacam itu sukar berubah bentuknya yang disebabkan oleh tekanan dari dalam. Tetapi bentuk bulat cembung ini tidak digunakan untuk ketel uap karena konstruksinya yang sulit untuk dikerjakan. Oleh karena itu pada umumnya ketel uap dibuat dalam bentuk silinder.
Bahan untuk ketel uap harus baik karena disamping harus menahan tekanan yang tinggi juga harus tahan pada suhu yang tinggi. Biasanya digunakan baja Siemens-Martin yang liat dan mudah dikerjakan.

Perawatan Boiler dan Pemanas Fluida Termis

Tugas dan pemeriksaan berkala pada bagian luar boiler. Seluruh pintu akses dan bidang kerja harus dirawat kedap udara dengan 362 menggunakan paking yang efektif. Sistem cerobong asap harus memiliki sambungan yang tertutup secara efektif dan bila perlu diisolasi.
Shell boiler dan bagiannya harus terisolasi dengan baik dan harus dipastikan bahwa isolasinya sudah cukup. Jika isolasi yang digunakan pada boiler, pipa dan silinder air panas dipasang beberapa tahun yang lalu, hampir dipastikan isolasinya sudah tipis walaupun tampaknya dalam kondisi baik. Perlu diingat bahwa isolasi tersebut terpasang ketika biaya bahan bakar sangat rendah. Penambahan ketebalan akan lebih baik.
Di akhir waktu pemanasan/pemakaian, selama musim panas, boiler harus di tutup sepenuhnya dan permukaan dalam ditutup sepenuhnya dengan plat dengan sisipan dessicant. (Hanya diterapkan untuk boiler yang tidak dioperasikan diantara waktu pemanasan/ pemakaian).

Meningkatkan steam dan air panas boiler

Kotoran dalam air boiler yang terkumpul dalam boiler, memiliki batasan konsentrasinya yang bergantung pada jenis dan beban boiler. Blow down boiler harus diminimalkan, tetapi ketentuan densitas air harus dijaga. Panas dari air blow down sebaiknya dimanfaatkan.
Dalam steam boiler, apakah pengolahan air cukup untuk mencegah pembentukan foaming (pembentukan busa/buih) atau priming dan konsekuensinya membawa kelebihan air dan bahan kimia kedalam sistem steam? Untuk steam boiler, apakah pengendalian otomatis permukaan air bekerja? Adanya pipa interkoneksi dapat menjadi sangat berbahaya. Apakah pengecekkan telah dilakukan secara berkala terhadap kebocoran udara di sekitar boiler, pintu atau antara boiler dan cerobong asap? Yang disebutkan pertama akan mengurangi efisiensi, yang disebutkan kemudian dapat menurunkan kualitas kekeringan steam dan mendorong terjadinya kondensasi, korosi, dan Smutting.
diperlukan perbandingan bahan bakar/udara disetel. Detektor dan alat kontrol yang ada sebaiknya diberi label dan diperiksa secara berkala. Tampilan kunci pengaman harus memiliki penyetel manual dan alarm. Harus dilakukan pengujian, atau pemasangan indikator permanen pada
burner untuk memantau kondisi kondisi tekanan/suhu operasi.
Dalam boiler yang berbahan bakar minyak atau gas, kabel-kabel sistim fussible link untuk mematikan/shutdown jika ada kebakaran atau pemanasan berlebih yang melintasi jalan yang dilewati karyawan, harus ditempatkan pada posisi di atas kepala. Fasilitas emergency shutdown diletakkan pada pintu keluar ruang boiler.

Jenis Kompresor

Pada jenis positive-displacement,sejumlah udara atau gas di- trap dalam ruang kompresi dan volumnya secara mekanik menurun, menyebabkan peningkatan tekanan tertentu kemudian dialirkan keluar. Pada kecepatan konstan, aliran udara tetap konstan dengan variasi pada tekanan pengeluaran.
Kompresor dinamik memberikan enegi kecepatan untuk aliran udara atau gas yang kontinyu menggunakan impeller yang berputar pada kecepatan yang sangat tinggi. Energi kecepatan berubah menjadi energi tekanan karena pengaruh impeller dan volute pengeluaran atau diffusers. Pada kompresor jenis dinamik sentrifugal, bentuk dari sudu-sudu impeller menentukan hubungan antara aliran udara dan tekanan (atau head) yang dibangkitkan.

Kompresor reciprocating

Di dalam industri, kompresor reciprocating paling banyak digunakan untuk mengkompresi baik udara maupun refrigerant.Prinsip kerjanya seperti pompa sepeda dengan karakteristik dimana aliran keluar tetap hampir konstan pada kisaran tekanan pengeluaran tertentu. Juga, kapasitas kompresor proporsional langsung terhadap kecepatan. Keluarannya,seperti denyutan.
Kompresor reciprocating tersedia dalam berbagai konfigurasi; terdapat empat jenis yang paling banyak digunakan yaitu horizontal, vertical, horizontal balanceopposed,dan tandem. Jenis kompresor reciprocating vertical digunakan untuk kapasitas antara 50 – 150 cfm. Kompresor horisontal balance opposed digunakan pada kapasitas antara 200 – 5000 cfm untuk desain multitahap dan sampai 10,000 cfm untuk desain satu tahap (Dewan Produktivitas Nasional,1993).
Kompresor udara reciprocating biasanya merupakan aksi tunggal dimana penekanan dilakukan hanya menggunakan satu sisi dari piston. Kompresor yang bekerja menggunakan dua sisi piston disebut sebagai aksi ganda.Sebuah kompresor dianggap sebagai kompresor satu tahap
jika keseluruhan penekanan dilakukan menggunakan satu silinder atau beberapa silinder yang parallel.
Beberapa penerapan dilakukan pada kondisi kompresi satu tahap. Rasio
kompresi yang terlalu besar (tekanan keluar absolut/tekanan masuk absolut) dapat menyebabkan suhu pengeluaran yang berlebihan ataumasalah desain lainnya. Mesin dua tahap yang digunakan untuk tekanan tinggi biasanya mempunyai suhu pengeluaran yang lebih rendah (140 to 160C), sedangkan pada mesin satu tahap suhu lebih tinggi (205 to 240C).


Kompresor Dinamis

Kompresor udara sentrifugal (lihat Gambar 5-16)merupakan kompresor dinamis, yang tergantung pada transfer energi dari impeller berputar ke udara. Rotor melakukan pekerjaan ini dengan mengubah momen dan tekanan udara. Momen ini dirubah menjadi tekanan tertentu dengan penurunan udara secara perlahan dalam difuser statis.
Kompresor udara sentrifugal adalah kompresor yang dirancang bebas minyak pelumas. Gir yang dilumasi minyak pelumas terletak terpisah dari udara dengan pemisah yang menggunakan sil pada poros dan ventilasi atmosferis. Sentrifugal merupakan kompresor yang bekerja kontinyu, dengan sedikit bagian yang bergerak; lebih sesuai digunakan pada volum yang besar dimana dibutuhkan bebas minyak pada
udaranya.
Kompresor udara sentrifugal menggunakan pendingin air dan dapat berbentuk paket; khususnya paket yang termasuk aftercooler dan semua control. Kompresor ini dikenal berbeda karakteristiknya jika dibandingkan dengan mesin reciprocating.Perubahan kecil pada rasio kompresi menghasilkan perubahan besar pada hasil kompresi dan efisiensinya. Mesin sentrifugal lebih sesuai diterapkan untuk kapasitas besar diatas 12,000 cfm.

Mengubah Polusi Panas Menjadi Energi Listrik



Peneliti dari Northwestern University telah menemukan suatu material yang dapat memanfaatkan polusi panas yang dihasilkan dari mesin kalor untuk menghasilkan listrik. Para peneliti tersebut menempatkan nanokristal garam batu (stronsium tellurida, SrTe) ke dalam timbal tellurida (PbTe). Material ini telah terbukti dapat mengkonversi kalor yang dihasilkan sistem pembuangan kendaraan (knalpot), mesin-mesin dan alat-alat industri yang menghasilkan kalor, hingga cahaya matahari dengan efisiensi yang jauh lebih tinggi dibanding penemuan-penemuan serupa sebelumnya.
Paduan material ini menunjukkan karakteristik termoelektrik yang cukup tinggi dan dapat mengubah 14% dari polusi kalor menjadi listrik, tanpa perlu sistem turbin maupun generator. Kimiawan, fisikawan, dan ilmuwan material dari Northwestern University berkolaborasi untuk mengembangkan material dengan kemampuan luar biasa ini. Hasil studi mereka telah dipublikasikan dalam jurnal Nature Chemistry.
“Hal ini telah diketahui selama 100 tahun belakangan, bahwa semikonduktor memiliki karakteristik dapat mengubah panas menjadi listrik secara langsung,” jelas Mercouri Kanatzidis, seorang Professor Kimia di The Weinberg College of Arts and Sciences. “Untuk membuat proses ini menjadi suatu proses yang efisien, yang dibutuhkan hanyalah material yang tepat. Dan kami telah menemukan resep atau sistem untuk membuat material dengan karakter tersebut.”
Mercouri Kanatzidis, co-author dari studi ini bersama dengan tim risetnya mendispersikan nanokristal garam batu stronsium tellurida, SrTe ke dalam material timbal (II) tellurida, PbTe. Percobaan sebelumnya pada penyertaan material berskala nano ke dalam material bulk telah meningkatkan efisiensi konversi kalor menjadi energi listrik dari material timbal (II) tellurida. Tetapi penyertaan material nano ke dalamnya juga meningkatkan jumlah penyebaran elektron, sehingga secara keseluruhan konduktivitas material ini berkurang. Pada studi ini, tim riset dari Northwestern menawarkan suatu model penggunaan material nano pada timbal (II) tellurida untuk menekan penyebaran elektron dan meningkatkan persentase konversi kalor menjadi energi listrik dari material ini.
“Kami dapat menggunakan material ini dengan menghubungkannya dengan peralatan yang cukup murah dengan beberapa kabel listrik dan dapat langsung digunakan, misalnya untuk menyalakan bola lampu,” terang Vinayak Dravid, Professor Ilmu Material dan Teknik di Northwestern’s McCormick School of Engineering and Applied Science dan juga merupakan co-author dari publikasi ilmiah ini. “Perangkat ini dapat membuat bola lampu menjadi lebih efisien dengan memanfaatkan polusi kalor yang dihasilkan dan mengubahnya menjadi energi yang lebih berguna seperti energi listrik, dengan persentase konversinya sekitar 10 hingga 15 persen.
Industri otomotif, kimia, batu bata, kaca, maupun jenis industri lainnya yang banyak membuang panas dalam proses produksinya dapat membuat sistem produksinya lebih efisien dengan menggunakan terobosan ilmiah ini dan dapat menuai keuntungan lebih, kata Kanatzidis yang juga mengadakan perjanjian kerjasama dengan Argonne National Laboratory.
“Krisis energi dan lingkungan adalah dua alasan utama ditemukannya terobosan ilmiah ini, tetapi ini tentu hanyalah permulaan,” kata Dravid. “Tipe struktur material seperti ini dapat saja menimbulkan dampak lain bagi komunitas sains yang tidak kami duga sebelumnya, mungkin saja di bidang mekanik seperti untuk menguatkan dan meningkatkan kinerja sistem mesin. Saya berharap, bidang lainnya dapat mengaplikasikan terobosan ilmiah ini dan menggunakannya untuk kebaikan.”


Sumber:
Northwestern University. “Breakthrough in converting heat waste to electricity: Automotive, chemical, brick and glass industries could benefit from discovery.” ScienceDaily 18 January 2011. 19 January 2011 .
Sumber gambar: http://www.sciencedaily.com/images/2011/01/110118143228.jpg

Sabtu, 29 Januari 2011

PERAWATAN YANG DIRENCANAKAN

Jadwal Operasi Pabrik
Untuk menjalankan program produksi dengan gangguan minimum, maka waktu untuk pekerjaan perawatan perlu direncanakan sebaik mungkin. Waktu pekerjaan perawatan ditentukan atas kondisi berikut:
• Kapan aktivitas produksi dihentikan karena adanya kebutuhan perawatan.
• Kapan pabrik tidak beroperasi karena jadwal waktu atau jam kerja yang sudah.
Penentuan jam operasi pabrik tergantung besar kecilnya industri, jenis dan tingkat produksi. Tabel 1. memperlihatkan berbagai sistem penggantian waktu kerja di industri, sehingga bisa ditentukan waktu yang tersedia untuk melakukan pekerjaan perawatan pada saat pabrik tidak beroperasi.
Perencanaan Perawatan
Urutan perencanaan fungsi perawatan meliputi :
a. Bentuk perawatan yang akan ditentukan.
b. Pengorganisasian pekerjaan perawatan yang akan dilaksanakan dengan pertimbangan ke masa depan.
c. Pengontrolan dan pencatatan.

Gambar 1. Sistem penggantian waktu kerja di industri.

d. Pengumpulan semua masalah perawatan yang dapat diselesaikan dengan suatu bentuk perawatan.
e. Penerapan bentuk perawatan yang dipilih:
• Kebijaksanaan perawatan yang telah dipertimbangkan secara cermat.
• Alternatif yang diterapkan menghasilkan suatu kemajuan.
• Pengontrolan dan pengarahan pekerjaan sesuai rencana.
• Riwayat perawatan dicatat secara statistik dan dihimpun serta dijaga untuk dievaluasi hasilnya guna menentukan persiapan berikutnya.
Sasaran Perencanaan Perawatan
Sasaran perencanaan perawatan :
• Bagian khusus dari pabrik dan fasilitas yang akan dirawat.
• Bentuk, metode dan bagaimana tiap bagian itu dirawat.
• Alat perkakas dan cara penggantian suku cadang.
• Waktu yang dibutuhkan untuk melakukan perawatan.
• Frekwensi perawatan yang perlu dilakukan.
• Sistem Pengelolaan pekerjaan.
• Metode untuk menganalisis pekerjaan.
Dasar-dasar pokok yang menunjang dalam pembentukan sistem perawatan :
• Jadwal kegiatan perawatan untuk semua fasilitas pabrik.
• Jadwal kegiatan perawatan lengkap untuk masing-masing tugas yang harus dilakukan pada tiap bagian.
• Program yang menunjukkan kapan tiap tugas harus dilakukan.
• Metode yang menjamin program perawatan dapat berhasil.
• Metode pencatatan hasil dan penilaian keberhasilan program perawatan.
Faktor-faktor Yang Diperhatikan Dalam Perencanaan Pekerjaan Perawatan
a. Ruang lingkup pekerjaan.
Untuk tindakan yang tepat, pekerjaan yang dilakukan perlu diberi petunjuk atau pengarahan yang lengkap dan jelas. Pengadaan gambar-gambar atau skema dapat membantu dalam melakukan pekerjaan.
b. Lokasi pekerjaan.
Lokasi pekerjaan yang tepat dimana tugas dilakukan, merupakan informasi yang mempercepat pelaksanaan pekerjaan. Penunjukan lokasi akan mudah dengan memberi kode tertentu, misalnya nomor gedung, nomor departemen dllsb.
c. Prioritas pekerjaan.
Prioritas pekerjaan harus dikontrol sehingga pekerjaan dilakukan sesuai dengan urutan yang benar. Jika suatu mesin mempunyai peranan penting, maka perlu memberi mesin tersebut prioritas utama.
d. Metode yang digunakan.
“Membeli kemudian memasang” sangat berbeda artinya dengan “membuat kemudian memasang”. Meskipun banyak pekerjaan bisa dilakukan dengan berbagai cara, namun akan lebih baik jika penyelesaian pekerjaan tersebut dilakukan dengan metode yang sesuai dengan keahlian yang dipunyai.
e. Kebutuhan material.
Apabila ruang lingkup dan metode kerja yang digunakan telah ditentukan, maka biasa diikuti dengan adanya kebutuhan material. Material yang dibutuhkan ini harus selalu tersedia.
f. Kebutuhan alat perkakas.
Sebaiknya alat yang khusus perlu diberi tanda pengenal agar mudah penyediaannya bila akan digunakan. Kunci momen, dongkrak adalah termasuk alat-alat khusus yang perlu ditentukan kebutuhannya.
g. Kebutuhan keahlian.
Keahlian yang dimiliki seorang pekerja akan memudahkan dia bekerja.
h. Kebutuhan tenaga kerja.
Jumlah tenaga kerja yang dibutuhkan dalam melakukan pekerjaan harus ditentukan untuk setiap jenis keahlian. Hal ini berguna dalam ketetapan pengawasannya.
Sistem Organisasi Untuk Perencanaan Yang Efektif
Perencanaan yang ditangani oleh staf perawatan adalah untuk mempersiapkan pengawasan terhadap pelaksanaan pekerjaan perawatan. Bagian perencana bertanggung jawab terhadap perencanaan:
a. Sistem order pekerjaan.
b. Perencanaan estimasi.
c. Penjadwalan.
d. Kontrol jaminan order
e. Laporan hasil kerja.
Pada bagan dibawah ini diperlihatkan salah satu contoh hubungan fungsi perencanaan yang diorganisasikan dalam struktur jenis perawatan.
Estimasi Pekerjaan
Perencanaan perawatan diadakan untuk membuat jadwal kerja dan kontrol yang dibutuhkan dalam menetapkan waktu yang diperlukan untuk melakukan kerja. Penilaian waktu kerja dilakukan oleh seorang estimator. Penilaian dengan kwalitas tinggi akan dihasilkan dari seorang estimator yang berpengalaman, berpengetahuan dan berkemampuan dalam bidang estimasi.
Kerugian-kerugian dari estimasi yang dibuat oleh pengawas adalah sebagai berikut:
a. Estimasi tidak tetap dan tidak teliti.
b. Estimasi sangat bervariasi ketelitiannya bila estimator berbeda-beda.
c. Metode pembandingnya sulit.
d. Latihan estimator tidak mudah.
e. Kebenarannya hampir tidak mungkin.

Suatu metode estimasi yang terarah, disebut sistem data historis, dengan memakai nilai waktu rata-rata berdasarkan pengalaman masa lalu. Namun metode data historis juga mempunyai kelemahan yaitu:
a. Nilai waktu rata-rata yang direfleksikan dari harga lama tidak seteliti waktu sekarang.
b. Metode yang berganti-ganti sulit membandingkannya.
c. Pekerjaan yang baru sulit ditaksir.
d. Kekurangan masa lalu menjadi dasar pada sistem.
Standar waktu kerja bisa ditetapkan pada tiap fungsi perawatan dengan metode-metode yang ada seperti metode “studi mengenai gerak dsb.
Tabel 1. adalah contoh lembaran data standar pekerjaan pemeliharaan.
Keuntungan-keuntungan Dari Perawatan Yang Direncanakan
Perawatan yang direncanakan dapat menghasilkan keuntungan-keuntungan sebagai berikut:
a. Kesiapan fasilitas industri lebih besar
1. Kerusakan-kerusakan yang terjadi pada peralatan bisa berkurang karena adanya sistem perawatan yang baik dan teratur.
2. Pelaksanaan perawatan tidak banyak mengganggu kegiatan produksi, sehingga hilangnya waktu produksi menjadi minimum.
3. Perawatan yang lebih sederhana dan teratur dapat mengurangi kemacetan produksi daripada adanya perawatan khusus yang mahal.
4. Perlengkapan dan suku cadang yang dibutuhkan lebih mudah terkontrol dan selalu tersedia bilaman diperlukan.
b. Pelayanan yang sederhana dan teratur, lebih cepat dan murah daripada memperbaiki kerusakkan yang terjadi secara tiba-tiba.
c. Pengelolaan dan pelayanan perawatan yang terencana dapat menjaga kesinambungan hasil industri dengan kualitas dan efisiensi yang tinggi.
d. Pemanfaatan tenaga kerja lebih besar dan efektif.
1. Frekuensi pekerjaan perawatan yang direncanakan dapat merata dalam setahunnya, sehingga penumpukan tugas perawatan akan terkurangi.
2. Tiap jenis pekerjaan perawatan lebih mudah diketahui kemajuannya dan dapat terkontrol secara efektif.
3. Cara kerja perawatan yang positif dapat mempengaruhi sikap kerja menjadi lebih baik dengan pendekatan yang penuh dedikasi dan tanggung jawab.
e. Adanya perhatian yang penuh untuk mengelola seluruh sarana dalam melayani program perawatan.

Tabel 1. Contoh lembaran data standar pekerjaan perawatan